人工智能在眼科疾病诊断中的最新进展涵盖了从糖尿病视网膜病变到前段疾病、青光眼、近视管理以及眼表疾病等多个领域。这些进展不仅提高了诊断的准确性和效率,也为患者提供了更个性化的治疗方案。未来,随着AI技术的进一步发展和优化,其在眼科疾病诊断和管理中的应用将更加广泛和深入。
人工智能(AI)在眼科疾病诊断中的最新进展主要集中在以下几个方面:
深度学习算法在糖尿病视网膜病变检测中的最新技术进展是什么?
参考文献
1. Varun Gulshan, L. Peng et al. “Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs..” JAMA(2016).
2. D. Ting, C. Cheung et al. “Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes.” JAMA(2017).
3. D. Ting, Valencia Foo et al. “Artificial intelligence for anterior segment diseases: Emerging applications in ophthalmology.” British Journal of Ophthalmology(2020).
4. Daniel T. Hogarty, D. Mackey et al. “Current state and future prospects of artificial intelligence in ophthalmology: a review.” Clinical & Experimental Ophthalmology(2018).
5. L. Balyen, T. Peto. “Promising Artificial Intelligence‐Machine Learning‐Deep Learning Algorithms in Ophthalmology.” Asia-Pacific Journal of Ophthalmology(2019).
6. F. Sorrentino, Giuseppe Jurman et al. “Application of Artificial Intelligence in Targeting Retinal Diseases..” Current drug targets(2020).
7. Xuan Huang, Hui Wang et al. “Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy.” Frontiers in Endocrinology(2022).
8. Junqiang Zhao, Yi Lu et al. “Systematic Bibliometric and Visualized Analysis of Research Hotspots and Trends on the Application of Artificial Intelligence in Ophthalmic Disease Diagnosis.” Frontiers in Pharmacology(2022).
9. L. Foo, M. Ang et al. “Is artificial intelligence a solution to the myopia pandemic?.” British Journal of Ophthalmology(2021).
10. Bin Sheng, Xiaosi Chen et al. “An overview of artificial intelligence in diabetic retinopathy and other ocular diseases.” Frontiers in Public Health(2022).
11. Grayson W. Armstrong, A. Lorch. “A(eye): A Review of Current Applications of Artificial Intelligence and Machine Learning in Ophthalmology.” International Ophthalmology Clinics(2019).
12. A. Moraru, D. Costin et al. “Artificial intelligence and deep learning in ophthalmology - present and future (Review).” Experimental and Therapeutic Medicine(2020).
13. Yu-Bai Chou, A. Kale et al. “Current status and practical considerations of artificial intelligence use in screening and diagnosing retinal diseases: Vision Academy retinal expert consensus.” Current Opinion in Ophthalmology(2023).
14. J. Wise. “AI system interprets eye scans as accurately as top specialists.” British Medical Journal(2018).
15. J. Ong, A. Selvam et al. “Artificial intelligence in ophthalmology: Optimization of machine learning for ophthalmic care and research.” Clinical & Experimental Ophthalmology(2021).
16. Yuke Ji, Shan Liu et al. “Advances in artificial intelligence applications for ocular surface diseases diagnosis.” Frontiers in Cell and Developmental Biology(2022).
17. L. Foo, Wei Yan Ng et al. “Artificial intelligence in myopia: current and future trends.” Current Opinion in Ophthalmology(2021).
18. Zuhui Zhang, Ying Wang et al. “Artificial intelligence-assisted diagnosis of ocular surface diseases.” Frontiers in Cell and Developmental Biology(2023).
19. S. Ittoop, Nicolas Jaccard et al. “The Role of Artificial Intelligence in the Diagnosis and Management of Glaucoma.” Journal of Glaucoma(2021).
20. Yuke Ji, Nan Chen et al. “Research Progress of Artificial Intelligence Image Analysis in Systemic Disease-Related Ophthalmopathy.” Disease Markers(2022).
21. Katharina A Heger, Sebastian M Waldstein. “Artificial intelligence in retinal imaging: current status and future prospects.” Expert Review of Medical Devices(2023).
22. S. A. Alryalat, Praveer Singh et al. “Artificial Intelligence and Glaucoma: Going Back to Basics.” Clinical Ophthalmology (Auckland, N.Z.)(2023).
23. S. Keel, P. van Wijngaarden. “The eye in AI: artificial intelligence in ophthalmology.” Clinical & Experimental Ophthalmology(2018).
24. Siamak Yousefi. “Clinical Applications of Artificial Intelligence in Glaucoma.” Journal of Ophthalmic & Vision Research(2023).
25. Y. Leong, C. Vasseneix et al. “Artificial Intelligence Meets Neuro-Ophthalmology.” Asia-Pacific Journal of Ophthalmology(2022).
26. 郑武,阮坤炜,吴天添等.人工智能糖尿病视网膜病变筛查系统与眼科医师诊断结果的一致性分析[J].眼科新进展,2020.
27. 赵金凤,吴桢泉,郑磊等.人工智能在眼科疾病诊疗的应用现状[J].眼科新进展,2019.
28. 袁进,肖鹏.眼科人工智能研究发展存在的挑战及应对 题录 附视频[J].中华眼科杂志,2023.
29. 孙铁,张雨晴,邵毅.人工智能及其在眼科疾病诊疗中的应用[J].眼科新进展,2020.
30. 余燕,侯银芬,吴昌凡等.人工智能深度学习技术在常见眼病辅助诊断的应用现状和进展[J].眼科新进展,2020.
31. Kaiming He, X. Zhang et al. “Deep Residual Learning for Image Recognition.” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(2015).
32. K. Simonyan, Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale Image Recognition.” CoRR(2014).
33. 庞浩,王枞.用于糖尿病视网膜病变检测的深度学习模型[J].软件学报,2017.
34. 1. 北京邮电大学计算机学院2. 教育部信息网络工程研究中心(北京邮电大学).深度学习方法在糖尿病视网膜病变诊断中的应用[J].自动化学报,2019.
35. 李琼,柏正尧,刘莹芳.糖尿病性视网膜图像的深度学习分类方法[J].中国图象图形学报,2018.
36. Carson K. Lam, Darvin Yi et al. “Automated Detection of Diabetic Retinopathy using Deep Learning.” AMIA Summits on Translational Science Proceedings(2018).
37. A. Krizhevsky, I. Sutskever et al. “ImageNet classification with deep convolutional neural networks.” Communications of the ACM(2012).
38. Zhuang Ai, Xuan Huang et al. “DR-IIXRN : Detection Algorithm of Diabetic Retinopathy Based on Deep Ensemble Learning and Attention Mechanism.” Frontiers in Neuroinformatics(2021).
39. 聂永琦,曹慧,杨锋等.深度学习在糖尿病视网膜病灶检测中的应用综述[J].计算机工程与应用,2021.
40. Deep R. Kothadiya, A. Rehman et al. “Attention Based Deep Learning Framework to Recognize Diabetes Disease From Cellular Retinal Images..” Biochemistry and cell biology = Biochimie et biologie cellulaire(2023).
41. Dhruva Patel, Lee Bromberger et al. “14-OR: Autonomous Artificial Intelligence Diabetic Eye Exams Mitigates Disparities in Screening Completion for Youth.” Diabetes(2024).
42. Justin R. Boyle, J. Vignarajan et al. “Automated Diabetic Retinopathy Diagnosis for Improved Clinical Decision Support.” Studies in health technology and informatics(2024).
43. L. Nakayama, M. B. GonÇalves et al. “The Challenge of Diabetic Retinopathy Standardization in an Ophthalmological Dataset.” Journal of Diabetes Science and Technology(2021).
44. S. Deshmukh, A. Roy. “An Empirical Exploration of Artificial Intelligence in Medical Domain for Prediction and Analysis of Diabetic Retinopathy: Review.” Journal of Physics: Conference Series(2021).
45. M. Abràmoff, Y. Lou et al. “Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning..” Investigative ophthalmology & visual science(2016).
46. A. Salma, A. Bustamam et al. “Artificial Intelligence Approach in Multiclass Diabetic Retinopathy Detection Using Convolutional Neural Network and Attention Mechanism.” International Journal of Advances in Soft Computing and its Applications(2021).
47. Charles R Cleland, Justus Rwiza et al. “Artificial intelligence for diabetic retinopathy in low-income and middle-income countries: a scoping review.” BMJ Open Diabetes Research & Care(2023).
48. 孟永安.糖尿病视网膜病变多模影像人工智能识别模型的构建[D].中南大学,2022.
49. 牛四杰,刘昱良.基于知识蒸馏双分支结构的视网膜病变辅助诊断方法 附视频[J].计算机应用,2024.
50. IntelligentMedicineSpecialCommitteeofChinaMedicineEducationAssociation,NationalKeyResearchandDevelopmentProgramofChina"DevelopmentandApplicationofOphthalmicMultimodalImagingandArtificialIntelligenceDiagnosisandTreatmentSystem"ProjectTeam.基于眼底照相的糖尿病视网膜病变人工智能筛查系统应用指南[J].中华实验眼科杂志,2019.
51. D. Ting, L. Pasquale et al. “Artificial intelligence and deep learning in ophthalmology.” The British Journal of Ophthalmology(2018).
52. Donald C Hubbard, Parker Cox et al. “Assistive applications of artificial intelligence in ophthalmology.” Current Opinion in Ophthalmology(2022).
53. Nicoleta Anton, B. Doroftei et al. “Comprehensive Review on the Use of Artificial Intelligence in Ophthalmology and Future Research Directions.” Diagnostics(2022).
54. 中国广东省深圳市眼科医院深圳市眼病防治研究所南昌大学第一附属医院眼科华南理工大学未来技术学院人工智能与数字经济广东省实验室(广州)《眼科人工智能临床研究评价指南(2023)》专家组中国医药教育协会眼科影像与智能医疗分会中国医药教育协会智能医学专业委员会.眼科人工智能临床研究评价指南(2023)[J].国际眼科杂志,2023.
55. 朱江兵,柯鑫,刘畅等.基于计算机视觉的糖尿病视网膜病变自动筛查系统[J].首都医科大学学报,2015.
56. 张悦,初春燕,余双等.人工智能应用于青光眼临床筛查及卫生效益分析[J].现代生物医学进展,2020.
57. 钱朝旭,钟华.人工智能在青光眼领域的研究进展[J].国际眼科杂志,2021.
58. Carol Y.Cheung,冉安然.青光眼影像人工智能深度学习研究现状与展望[J].山东大学学报(医学版),2020.
59. 丁喜艳,杨卫华,曹国凡等.人工智能在青光眼诊断中的应用[J].中国数字医学,2021.
60. 马婧一.人工智能在青光眼图像诊断中的应用题录[J].中华实验眼科杂志,2020.
61. 张秀兰,周和政,李飞等.人工智能能否基于基线数据预测青光眼病情进展[J].中华眼科杂志,2021.
62. 李明远,房丰洲.基于青光眼影像的人工智能辅助诊断技术及进展 附视频[J].激光与光电子学进展,2024.
63. 刘含若,白玮玲,张悦等.人工智能深度学习技术在辅助青光眼性眼底病变图像标注中的应用研究[J].中华眼科医学杂志(电子版),2020.
64. 刘含若,张悦,王宁利.人工智能在青光眼领域的应用前景重点在于筛查还是预测题录[J].中华眼科杂志,2021.
65. 张蓝天,管军霖.计算机视觉辅助青光眼诊断算法研究[J].福建电脑,2024.
66. Chenchen Zhang, Jing Zhao et al. “Applications of Artificial Intelligence in Myopia: Current and Future Directions.” Frontiers in Medicine(2022).
67. Yan Zhu, Rebecca J. Salowe et al. “Advancing Glaucoma Care: Integrating Artificial Intelligence in Diagnosis, Management, and Progression Detection.” Bioengineering(2024).
68. 居玲,张常春,韩香香等.一种基于人工智能的防控近视眼应用软件[J].中国科技信息,2020.
69. 张晓培,黄建峰,李童燕等.人工智能技术在近视防控领域的研究进展[J].国际眼科杂志,2023.
70. 于楚瑶,董力,魏文斌.人工智能技术在病理性近视诊断与病情监测中的应用现状[J].中国医学前沿杂志(电子版),2023.
71. 万程,陈柏兵,沈建新等.基于人工智能ResNeXt的高度近视诊断方法[J].实用老年医学,2022.
72. 朱正阳,薛春燕.人工智能在近视防控与治疗中的应用进展[J].眼科学报,2021.
73. 《人工智能在近视防治中的应用专家共识(2024)》专家组,国际转化医学会眼科学专委会,中国医药教育协会眼科影像与智能医疗分会等.人工智能在近视防治中的应用专家共识(2024) 题录 附视频[J].中华实验眼科杂志,2024.
74. 潘新蕾.人工智能基于眼底彩照与OCT的病理性近视ATN分级研究[D].北京协和医学院,2022.
75. D. Ting, M. Ang et al. “Artificial intelligence-assisted telemedicine platform for cataract screening and management: a potential model of care for global eye health.” British Journal of Ophthalmology(2019).
Ace Vision, Genius Insight